A l’issue de la formation le participant sera capable de :
Savoir installer R
Comprendre comment manipuler des données avec R
Savoir importer et exporter des données
Être en mesure de réaliser des analyses statistiques basiques avec R
Savoir restituer des résultats à l’aide de graphiques
- BDD & Décisionnel
- Décisionnel
Formation Les fondamentaux de l’analyse statistique avec R
Objectifs
Prérequis
Avoir des notions en statistique appliquée ou connaissances mathématiques équivalentes
Être familier avec l’environnement Microsoft Windows
Cette formation ne peut être financée que dans le cadre d’un projet d’entreprise (prise en charge entreprise ou OPCO). Les dossiers à financement personnel et CPF ne sont pas pris en compte.
Public
Ingénieurs, Analystes, Data analysts
Toute personne intéressée par l’analyse statistique avec R
Dernière mise à jour
Programme mis à jour le 31 janvier 2024
Bon à savoir
Evaluez votre niveau
Pour vous aider à bien choisir votre formation, nous vous proposons soit un entretien avec le formateur soit un test d’évaluation. Cela vous assurera que vous disposez des connaissances nécessaires pour suivre la formation dans des conditions optimales.
Formations modulables
Toutes nos formations sont disponibles en présentiel comme en distanciel, en mode coaching individuel ou en groupe de 3 à 6 participants maximum.
Travaux pratiques
Nos formations comprennent de nombreux travaux pratiques pour un meilleur apprentissage (60 % de pratique). Nous proposons également de travailler sur vos données pour une meilleure expérience.
Les Modules
de formation
Module1
Introduction
Qu’est-ce que R ?
Avantages et inconvénients
Solutions concurrentes gratuites ou payantes
Module2
Installation
Installation de R ou Microsoft R Open sur MS Windows ou Scientific Linux
Découverte de l’environnement
Utiliser l’historique des commandes
Exemple d’environnement superposé (R-Studio)
Comment citer le logiciel dans une publication scientifique
Comment citer des packages dans une publication scientifique
Module3
Utilisation
Vider la console de commande
Utilisation de l’aide
Changer la langue de l’interface
Quitter en ligne de commande
Changer le dossier de travail par défaut temporairement ou à chaque session (*.Rprofile)
Changer définitivement le dossier par défaut des packages (*.Rprofile)
Sauver/Charger l’espace de travail (*.Rdata)
Sauver/Charger/Exécuter un historique des commandes (*.Rhistory)
Sauver les commandes et sorties dans un fichier (*.txt)
Sauver/Charger un script (*.R)
Module4
Manipulation de packages
Installer/Désinstaller/Mettre à jour des packages
Obtenir des informations systèmes sur les packages
Écrire plusieurs commandes sur une ligne
Ajouter des commentaires
Module5
Types de données
Manipulations de scalaires (réels)
Manipulations de nombres complexes
Manipulations de variables
Manipulations de vecteurs
Manipulations de matrices
Manipulations de textes
Manipulations de dates et de durées
Création/Édition de données en ligne de commande
Gérer les variables dans la mémoire
Module6
Import et export de données
Importer/Exporter des données d’Excel
Importer/Exporter des données en *.csv et gestion du passage d’encodage Linux/Windows
Importer/Exporter des fichiers SAS
Importer des données *.csv du web
Fusionner des fichiers *.csv
Importer de données de MS Access
Importer des données *.xml du web
Importer des données de MySQL
Importer des données d’Oracle (Express)
Importer des fichiers *.json
Module7
Manipulation de données
Utiliser le SQL
Quelques Data set
Manipuler les data frames
Accélérer l’accès aux colonnes
Renommer les colonnes
Appliquer des rangs
Trier des données
Filtrer des données
Réaliser des sous-sélections
Fusionner des données
Supprimer les doublons
Échantillonnage
Empiler/Désempiler des données
Module8
Analyse de données
Synthétiser des données (tables de contingence)
Travailler avec des valeurs absentes
Définir le nombre de décimales de chaque sortie
Générer des variables pseudo-aléatoires
Statistiques descriptives simples (comptage, éléments uniques, moyenne, max, min, centiles, somme, écart-type
biaisé/non biaisé, cv, médiane, etc.)
Plotter (tracer) des fonctions algébriques
Racines d’équations univariées
Intégration numérique
Intégration algébrique
Dérivation algébrique/numérique
Optimisation linéaire uni ou multidimensionnelle
Optimisation sous contrainte
Programmation linéaire
Les prochaines
sessions de formation
Sur demande
Vous souhaitez organiser cette formation à une date spécifique ?Contactez-nous en remplissant le formulaire ci-dessous
18 novembre 2024
13 janvier 2025
03 mars 2025
05 mai 2025